Vznik planet

Planety se zrodily ze sluneční mlhoviny, prachoplynového disku, který obklopoval nově utvořené Slunce. Jako nejpravděpodobnější způsob jejich vzniku se v současné době považuje tzv. akrece, to jest vznik z prachových částic obíhajících centrální protohvězdu. Původní hmota v prachoplynovém disku obsahovala jen několik málo minerálů, ovšem žár, který zalil okolí Slunce po zažehnutí jaderné fúze v jeho nitru, dal vzniknout krystalům řady minerálů nových. Mezi ně patřily především prvním železoniklové slitiny, sulfidyfosfidyoxidy a křemičitany. Svědectví o nich nám podávají utuhlé kapky kdysi roztavené horniny (tzv. chondruly) uvnitř starých meteoritů. Tyto částice se dostávaly do kontaktu a začaly tvořit shluky o průměru až 200 metrů, které se dále srážely a vytvářely větší tělesa, zvaná planetesimály, dosahující rozměrů až kolem 10 kilometrů. Jejich velikosti se dalšími srážkami nadále zvětšovaly, a to rychlostí několika centimetrů ročně po dobu několika milionů let.

Vnitřní část sluneční soustavy, to jest oblast do vzdálenosti asi 4 astronomických jednotek, byla příliš teplá na to, aby zde molekuly prchavých látek jako voda nebo methan mohly kondenzovat, takže planetesimály se zde mohly formovat pouze z látek s vysokým bodem tání, jako jsou kovykřemičitany. Jakmile velikosti některých z nich přesáhly 150 kilometrů, došlo v jejich nitru k částečnému natavení materiálu a k jejich rozvrstvení, včetně vzniku na kovy bohatého jádra. K tomu se ještě přidružily tepelné a mechanické šoky během jejich srážek a chemické reakce s částečkami vody, která pronikala do jejich trhlin. Tyto podmínky vedly k další tvorbě nových minerálů, jejichž celkový počet se již pohyboval kolem 250. Protože materiály, z nichž vznikaly planetesimály ve vnitřní části sluneční soustavy, jsou ve vesmíru poměrně vzácné a v původní mlhovině tvořily pouze 0,6 % její hmoty, nemohla tato tělesa dorůst příliš velkých rozměrů. Zárodky terestrických planet měly asi 5 setin hmotnosti dnešní Země a další materiál přestaly akumulovat asi 100 000 let po vzniku Slunce. Tělesa se nadále srážela a spojovala, což vedlo ke vzniku terestrických planet (MerkuruVenušeZemě a Marsu) současných rozměrů.

V průběhu svého vzniku byly terestrické planety stále ponořeny v prachoplynovém disku. Teplotahustota a tlak plynu v disku se vzrůstající vzdáleností od hvězdy klesají. Tlak, rotacea gravitace plynu jsou v rovnováze a vlivem toho plyn obíhá o něco pomaleji, než pevná tělesa. Mezi pomalejším plynem a planetami docházelo k přenosu momentu hybnosti, takže planety se dostávaly na nové dráhy.

Plynní obři (JupiterSaturnUran, a Neptun) vznikli ve větší vzdálenosti, za takzvanou sněžnou čárou, kde hmota již byla natolik chladná, že i prchavé látky mohly zůstat v pevném stavu. Jádra budoucích plynných obrů tedy byla vytvořena z ledových materiálů, kterých bylo mnohem větší množství než kovů a křemičitanů vytvářejících terestrické planety, takže mohla dosáhnout hmotnosti, která jim umožňovala zachycovat z okolí vodík a helium, nejlehčí a současně i nejběžnější prvky. Během 3 milionů let tělesa v této oblasti dorůstala do hmotnosti až čtyř Zemí. Dnes čtyři plynní obři tvoří 99 % veškeré hmoty obíhající kolem Slunce. Astronomové věří, že to není žádná náhoda, že Jupiter leží poměrně nedaleko za sněžnou čárou. Na zárodky planet obíhajících v plynném prostředí protoplanetárního disku totiž působí dva protichůdné vlivy. Plyn, který obíhá na vnější straně jejich dráhy, je pomalejší, takže je brzdí, a naopak plyn na vnitřní straně jejich dráhy je rychlejší, takže je popohání. Vnější oblast je ale větší, a proto její vliv dominuje, takže planetární embryo postupně ztrácí energii a po spirále se přibližuje k centrální hvězdě. U sněžné hranice se však akumulovalo velké množství vody vypařené z materiálu padajícího dovnitř sluneční soustavy, takže když se zárodek budoucího Jupiteru dostal až sem, začal ho pohánět poměrně silný „vítr“ do zad od rychle obíhajících částic v této oblasti, díky čemuž se jeho oběžná dráha stabilizovala. Zárodek budoucího plynného obra nadále přitahoval z okolního prostředí vodík a rostl velkou rychlostí; za 1000 let mohl dosáhnout až poloviny své konečné hmotnosti.

Vznik Jupiteru usnadnil vznik dalších plynných obrů. V jeho blízkosti totiž vznikla v obíhajícím plynu velká mezera, jejíž vnější okraj měl podobný vliv jako sněžná čára: rozdíl tlaku urychloval obíhající plyn, a tím byla zastavena migrace dalšího z planetárních embryí směrem do středu soustavy. Rozdíly ve velikosti plynných obrů patrně souvisí s dobou jejich vzniku – Saturn je mnohem menší než Jupiter, protože vznikal o několik milionů let později a v disku na něj již nezbylo tolik materiálu.

Hvězdy typu T Tauri, jakým bylo i mladé Slunce, mívají mnohem silnější hvězdný vítr než mnohem stabilnější a starší hvězdy. Uran a Neptun se zformovaly až po Jupiteru a Saturnu, kdy již sluneční vítr odvál většinu materiálu. Důsledkem bylo, že tyto planety nashromáždily jen málo vodíku a helia – ne více, než činí hmotnost Země. Hlavním problémem teorií popisujících vznik těchto planet je doba jejich vzniku. V oblastech, kde se nyní nacházejí, by trvalo miliony let, než by akrecí vznikla jejich jádra, takže by to nemohly před odvátím plynu slunečním větrem stihnout. To znamená, že se Uran i Neptun musely zformovat mnohem blíže Slunci, poblíž Jupiteru a Saturnu, možná i mezi nimi, a poté migrovaly směrem ven. V době planetesimál se tělesa ve sluneční soustavě nepohybovala vždy jen směrem ke Slunci. Vzorky prachu, které přinesla sonda Stardust z ohonu komety Wild 2, naznačují, že materiál z raných fází vznikající sluneční soustavy migroval z teplejších vnitřních oblastí do oblasti Kuiperova pásu.

Po 3 až 10 milionech let sluneční vítr odvál všechen plyn a prach protoplanetárního disku do

Umělecká představa sluneční mlhoviny

Umělecká představa sluneční mlhoviny

mezihvězdného prostoru, a tak další růst planet ukončil.

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *