Jádro
Uprostřed Slunce se nachází jádro, kde dochází k uvolňování energie. Jedná se o oblast, která sahá do vzdálenosti 175 000 km od středu. Teplota v jádru dosahuje 1,5×107 K a hustota plazmatu se zde pohybuje okolo 130 000 kg.m−3.
Termojaderná fúze
V tomto prostředí jsou již jednotlivé atomy rozloženy na volná jádra a elektrony, současně se vodík postupně a velmi pomalu mění nahelium za uvolnění obrovského množství energie, tento proces se nazývá termojaderná fúze. Každou sekundu se při tom spálí 700 000 000 tun vodíku. Ani to však neznamená, že uvnitř Slunce děj probíhá nějak překotně. Hustota výkonu Slunce je pouhých 0,19 mW.kg−1.
Postupně přes několik mezistupňů v tzv. proton-protonovém cyklu dojde ke sloučení čtyř protonů v jednu částici alfa – jádra helia, přičemž dva z protonů se přemění naneutrony. Řetězec těchto reakcí produkuje mnoho energie ve formě fotonů tvrdého gama záření. Předpokládá se, že z 1 gramu vodíku vznikne hélium a současně i 1012 J energie. Ty pronikají k chladnějšímu povrchu, což jim trvá podle různých odhadů od asi 17 tisíců po 50 miliónů let. Za tu dobu předají většinu své energie hmotě Slunce a stanou se z nich fotony o mnohem delších vlnových délkách, například fotony viditelného světla. Mnohem rychleji se k povrchu dostanou vzniklá neutrina, pro které hmota Slunce prakticky není překážkou.
Tachoklina
Jedná se o tenkou mezivrstvu, která byla objevena měřením americké družice SOHO. Předpokládá se, že zde dochází ke generaci rozsáhlého magnetického pole Slunce. Současně se zde mění rychlost proudů plazmatu a rotační rychlost.
Konvektivní zóna
Tato vrstva o tloušťce asi 200 tisíc km je nejsvrchnější vrstva Slunce, která se podobá hrnci s vroucí vodou. V této vzdálenosti od jádra je již způsob předávání energie pomocí záření málo účinný. Některé ionty jsou totiž schopny za nižších teplot fotony pohlcovat a následně je neemitovat dále, čímž dochází k jejich absorpci.
Studenější hmota padá směrem ke středu Slunce, ohřátá se dere k povrchu, což způsobuje značné turbulence v této vrstvě a promíchávání materiálu. Hlavním přenosem tepla se tak stává proudění čili konvekce. Během konvekce se přenášený plyn rychle ochlazuje a rozpíná. Výstupy konvektivních proudů je možno v této zóně pozorovat jako granuly či supergranuly. Odhaduje se, že teplota se zde pohybuje od 2 000 000 do 6 000 K.
Fotosféra
Fotosféra je viditelný povrch Slunce, která se pozoruje jako sluneční kotouč viditelný ze Země. Při pozorování se jeví střed Slunce jasnější, než okraje, což je dáno tím, že na okrajích Slunce jsou pozorovány chladnější oblasti fotosféry. Ve fotosféře je možné pozorovat vrcholky vystupujících proudů z konvektivní zóny dosahující velikostí až 1 000 km (tzv. granulace). Nápadné jsou také sluneční skvrny a protuberance. Předpokládá se, že její hustota se pohybuje okolo 1023 částic/m3 (či v jiném zápisu 3,5×10−7 do 4,5×10−8g/cm3) při teplotě kolem 5 800 K. Fotosféra je tak nejchladnější oblastí Slunce. Její šířka je v rozmezí mezi 200 až 400 km.
Typickým jevem ve fotosféře je přítomnost granulí, které jsou různá zrna s průměrem od 200 do 1 800 km. Jedná se o výstupné konvektivní proudy ze svrchních oblastí Slunce, které mají přibližně o 200 °C vyšší teplotu než okolní fotosféra.
Chromosféra
Chromosféra je vcelku tenká a řídká vrstva nad fotosférou, která má jasně červené zbarvení. Její teplota stoupá směrem od Slunce a dosahuje až 300 000 K, ale její hodnota není všude stejná. Do výšky 3 000 km pozvolna stoupá asi k hodnotě 6 000 K, ale pak rychle narůstá směrem od Slunce, což je nejspíše způsobeno nestabilitou plazmatu.Objevují se v ní chromosférické erupce. Je to vrstva silně ionizovaného plynu, která se rozkládá od 12 000 do 15 000 km. Jedná se o spodní část sluneční atmosféry, která je během zatmění Slunce viditelná jako načervenalý světelný úkaz. Tato červená barva je způsobena tím, že maximum jejího záření se nachází ve vodíkové čáře H-alfa, čemuž odpovídá vlnová délka světla 656,7 nanometrů. Hustota plynu se zde pohybuje okolo 10−15 g/cm3, což odpovídá přibližně hustotě částic 75 km nad povrchem Země.
Přechodová oblast
Přechodová oblast (některé zdroje jí samostatně nevyčleňují) je tenká nepravidelná vrstva sluneční atmosféry, které odděluje korónu od chladnější fotosféry. Teplota se zde náhle mění z 20 000 K (na hranici s chromosférou) až na teplotu 1 000 000 K (na hranici s korónou). Tato vrstva je pozorovatelná převážně přes ultrafialovou část spektra.
Koróna
Koróna nemá vnější hranici a zasahuje hluboko do sluneční soustavy, ale někdy je udáváno, že končí ve vzdálenosti 1 až 2 000 000 km. Teplota v koróně o tří řády přesahuje teplotu na povrchu Slunce, pohybuje se mezi 1 000 000 K až 6 000 000 K. Příčinou je zřejmě ohřev pomocí Alfénových vln. Koróna je velice řídká (hustota částic se pohybuje okolo 1011 částic/m3) a normálně neviditelná, neboť je přezářena spodnější fotosférou; pozorovatelná je pouze při zatměních Slunce nebo pomocí koronografu. Také v koróně se vyskytují erupce a protuberance.